Homocysteine Mediated Expression and Secretion of Monocyte Chemoattractant Protein-1 and Interleukin-8 in Human Monocytes

Author:

Zeng Xiaokun1,Dai Jing1,Remick Daniel G.1,Wang Xian1

Affiliation:

1. From the Institute of Vascular Medicine (X.Z., J.D., X.W.), Peking University Third Hospital; Department of Physiology (X.W.) and Reference Laboratory of Education Ministry on Molecular Cardiology (X.W.), Peking University Basic Medical College, Beijing, People’s Republic of China; and Department of Pathology (D.G.R.), University of Michigan Medical School, Ann Arbor, Mich.

Abstract

Homocysteine (Hcy) is an independent risk factor for cardiovascular disease. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are major chemokines for leukocyte trafficking and have been identified in atheromatous plaques. MCP-1 and IL-8 have been found to express mainly by macrophages in human lesion. We undertook this study to determine whether Hcy could induce the secretion of chemokines from human monocytes and, if so, to explore the mediating mechanism. We found that clinically relevant levels of Hcy (10 to 1000 μmol/L) increased the protein secretion and mRNA expression as well as activity of MCP-1 and IL-8 in cultured primary human monocytes. These effects of Hcy were primarily mediated by reactive oxygen species (ROS) through NAD(P)H oxidase, because Hcy could upregulate the production of ROS and the inhibitors of protein kinase C, calmodulin, free radical scavengers, or NAD(P)H oxidase abolished Hcy-induced ROS production and MCP-1 and IL-8 secretion in these cells. Furthermore, the inhibitors of mitogen-activated protein kinase (p38 and extracellular signal-regulated kinase 1/2) and nuclear factor-κB or the activator of peroxisome proliferator-activated receptor γ (PPARγ) significantly decreased Hcy-induced MCP-1 and IL-8 secretion in these cells. These data indicate that pathophysiological levels of Hcy can alter human monocyte function by upregulating MCP-1 and IL-8 expression and secretion via enhanced formation of intracellular ROS originated from NAD(P)H oxidase source via calmodulin or protein kinase C signaling pathways and that Hcy-induced ROS subsequently activates mitogen-activated protein kinase (p38 and ERK1/2) and nuclear factor-κB in a PPARγ activator–sensitive manner. Thus, activation of PPARγ may become a therapeutic target for preventing Hcy-induced proatherogenic effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3