Programming Smooth Muscle Plasticity With Chromatin Dynamics

Author:

McDonald Oliver G.1,Owens Gary K.1

Affiliation:

1. From the Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville.

Abstract

Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues. For example, vascular SMCs undergo profound changes in their phenotype during neointimal formation in response to vessel injury or within atherosclerotic plaques. Recent studies have shown that interaction of serum response factor (SRF) and its numerous accessory cofactors with CArG box DNA sequences within promoter chromatin of SMC genes is a nexus for integrating signals that influence SMC differentiation in development and disease. During development, SMC-restricted sets of posttranslational histone modifications are acquired within the CArG box chromatin of SMC genes. These modifications in turn control the chromatin-binding properties of SRF. The histone modifications appear to encode a SMC-specific epigenetic program that is used by extracellular cues to influence SMC differentiation, by regulating binding of SRF and its partners to the chromatin template. Thus, SMC differentiation is dynamically regulated by the interplay between SRF accessory cofactors, the SRF–CArG interaction, and the underlying histone modification program. As such, the inherent plasticity of the SMC lineage offers unique glimpses into how cellular differentiation is dynamically controlled at the level of chromatin within the context of changing microenvironments. Further elucidation of how chromatin regulates SMC differentiation will undoubtedly yield valuable insights into both normal developmental processes and the pathogenesis of several vascular diseases that display detrimental SMC phenotypic behavior.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3