Adenosine A2 Receptor Activation Attenuates Afferent Arteriolar Autoregulation During Adenosine Receptor Saturation in Rats

Author:

Feng Ming-Guo1,Navar L. Gabriel1

Affiliation:

1. From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, La.

Abstract

Adenosine is an important paracrine agent regulating renal hemodynamics via adenosine A1 and A2 receptors. To determine the interactions between adenosine A1 and A2 receptors and the possible role of adenosine as a modulator of afferent arteriolar autoregulatory responses, videomicroscopic measurements of afferent arteriolar dimensions were performed at different perfusion pressures (from 100 to 125 and 150 mm Hg) using the isolated-blood–perfused rat juxtamedullary nephron preparation. Single afferent arterioles were visualized and superfused with low or high concentrations of adenosine, either alone or with the adenosine A1 receptor antagonist 8-noradamantan-3-yl-1,3-dipropylxanthine (10 μmol/L) or the adenosine A2 receptor antagonist dimethyl-1-propargylxanthine (10 μmol/L). Adenosine (20 μmol/L) decreased afferent arteriolar diameter by −9.0±0.9%, and this effect was enhanced by dimethyl-1-propargylxanthine (10 μmol/L) to −16.1±1.2%. However, autoregulatory capability was maintained. Adenosine-induced vasoconstriction was prevented by 8-noradamantan-3-yl-1,3-dipropylxanthine (10 μmol/L) with diameter increasing by 9.6±1.2%. Adenosine receptor saturation with a high concentration of adenosine (120 μmol/L) or blocking A1 receptors with 8-noradamantan-3-yl-1,3-dipropylxanthine in the presence of adenosine resulted in marked vasodilation and marked impairment of autoregulatory responses to increases in perfusion pressure (−1.5±1.1% and −3.5±0.9%). However, afferent arteriolar autoregulatory responses to elevations in perfusion pressure were restored after blockade of A2 receptors alone or in combination with A1 receptor blockade. During treatment with dimethyl-1-propargylxanthine in the presence of adenosine receptor saturation (120 μmol/L), afferent arteriolar autoregulatory responses were intact (−16.5±1.6% and −26.4±2.1%). These results indicate that the interactions between adenosine A1 and A2 receptors exert important modulatory influences on afferent arteriolar tone and autoregulatory capability. Activation of A2 receptors abrogates the counteracting influences of A1 receptors leading to marked vasodilation and decreased afferent arteriolar autoregulatory efficiency.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3