Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels

Author:

Soni Hitesh1,Peixoto-Neves Dieniffer1,Buddington Randal K.12,Adebiyi Adebowale1ORCID

Affiliation:

1. Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee

2. School of Health Studies, University of Memphis, Memphis, Tennessee

Abstract

Adenosine, a regulator of cardiovascular development and renal function, constricts renal afferent arterioles by inducing intracellular Ca2+ concentration ([Ca2+]i) elevation in smooth muscle cells (SMCs) via activation of its cognate A1 receptors (A1Rs). Mechanisms that underlie A1R-dependent [Ca2+]i elevation in renal vascular SMCs are not fully resolved. Whether A1R expression and function in preglomerular microvessels are dependent on postnatal kidney maturation is also unclear. In this study, we show that selective activation of A1Rs by 2-chloro- N6-cyclopentyladenosine (CCPA) does not stimulate store-operated Ca2+ entry in afferent arterioles isolated from neonatal pigs. However, CCPA-induced [Ca2+]i elevation is dependent on phospholipase C and transient receptor potential cation channel, subfamily C, member 3 (TRPC3). Basal [Ca2+]i was unchanged in afferent arterioles isolated from newborn (0-day-old) pigs compared with their 20-day-old counterparts. By contrast, CCPA treatment resulted in significantly larger [Ca2+]i in afferent arterioles from 20-day-old pigs. A1R protein expression levels in the kidneys and afferent arterioles were unaltered in 0- vs. 20-day-old pigs. However, the TRPC3 channel protein expression level was ~92 and 78% higher in 20-day-old pig kidneys and afferent arterioles, respectively. These data suggest that activation of A1Rs elicits receptor-operated Ca2+ entry in porcine afferent arterioles, the level of which is dependent on postnatal maturation of TRPC3 channels. We propose that TRPC3 channels may contribute to the physiology and pathophysiology of A1Rs.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3