Neutrophil Extracellular Traps Promote the Development of Intracranial Aneurysm Rupture

Author:

Korai Masaaki1,Purcell James1,Kamio Yoshinobu1ORCID,Mitsui Kazuha1ORCID,Furukawa Hajime1,Yokosuka Kimihiko1,Miyamoto Takeshi1,Sato Hitomi1,Sato Hiroki1,Eguchi Satoru2ORCID,Ai Jinglu1,Lawton Michael T.13,Hashimoto Tomoki1ORCID

Affiliation:

1. Barrow Aneurysm and AVM Research Center (M.K., J.P., Y.K., K.M., H.F., K.Y., T.M., Hitomi Sato, Hiroki Sato, J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.

2. Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.E.).

3. Department of Neurosurgery (M.T.L.), Barrow Neurological Institute, Phoenix, AZ.

Abstract

Potential roles for neutrophils in the pathophysiology of intracranial aneurysm have long been suggested by clinical observations. The presence of neutrophil enzymes in the aneurysm wall has been associated with significant increases in rupture risk. However, the mechanisms by which neutrophils may promote aneurysm rupture are not well understood. Neutrophil extracellular traps (NETs) were implicated in many diseases that involve inflammation and tissue remodeling, including atherosclerosis, vasculitis, and abdominal aortic aneurysm. Therefore, we hypothesized that NETs may promote the rupture of intracranial aneurysm, and that removal of NETs can reduce the rate of rupture. We employed both pharmacological and genetic approaches for the disruption of NETs and used a mouse model of intracranial aneurysm to investigate the roles of NETs in the development of intracranial aneurysm rupture. Here, we showed that NETs are detected in human intracranial aneurysms. Both global and granulocyte-specific knockout of peptidyl arginine deiminase 4 (an enzyme essential for NET formation) reduced the rate of aneurysm rupture. Pharmacological blockade of the NET formation by Cl-amidine also reduced the rate of aneurysm rupture. In addition, the resolution of already formed NETs by deoxyribonuclease was effective against aneurysm rupture. Inhibition of NETs formation with Cl-amidine decreased mRNA expression of proinflammatory cytokines (intercellular adhesion molecule 1 [ICAM-1], interleukin 1 beta [IL-1β], monocyte chemoattractant protein-1 [MCP-1], and tumor necrosis factor alpha [TNF-α]) in cerebral arteries. These data suggest that NETs promote the rupture of intracranial aneurysm. Pharmacological removal of NETs, by inhibition of peptidyl arginine deiminase 4 or resolution of already-formed NETs, may represent a potential therapeutic strategy for preventing aneurysmal rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3