Affiliation:
1. Department of Neurosurgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China
2. School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China
3. Department of Neurosurgery, Sir Run Run Shaw Hospital (Shaoxing) Shaoxing China
Abstract
AbstractIntracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen) on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3β in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3β/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF‐α and IL‐23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen‐treated, Th17 differentiation‐inducing cell‐conditioned medium significantly up‐regulated the expression of tight junction proteins ZO‐1, Occludin, and Claudin‐5 in murine aortic endothelial cells. Administering the GSK3β inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up‐regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3β, which reduces endothelial cell injury and up‐regulates tight junction protein expression.
Reference50 articles.
1. Isolation and th17 differentiation of naïve CD4 T lymphocytes;Bedoya S. K.;Journal of Visualized Experiments,2013
2. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases
3. In vivo engineering of lymphocytes after systemic exosome-associated AAV delivery
4. IL‐17A damages the blood‐retinal barrier through activating the Janus kinase 1 pathway;Byrne E. M.;Biomedicine,2021
5. Biology of Intracranial Aneurysms: Role of Inflammation