Affiliation:
1. From the Hypertension Unit (M.S.A., E.R., H.W., F.H.H.L.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine (M.S.A., E.R., F.H.H.L.), University of Ottawa, Ottawa, Ontario, Canada.
Abstract
To elucidate the role of epithelial sodium channels (ENaCs) and Na
+
-K
+
-ATPase in Na
+
transport by the choroid plexus, we studied ENaC expression and Na
+
transport in the choroid plexus. Lateral ventricle choroid plexuses were obtained from young male Wistar, Dahl salt–resistant (SS.BN13), and Dahl salt–sensitive (SS/MCW) rats on a regular (0.3%) or high- (8.0%) salt diet. The effects of ENaC blocker benzamil and Na
+
-K
+
-ATPase blocker ouabain on sodium transport were evaluated by measuring the amounts of retained
22
Na
+
and by evaluating intracellular [Na
+
] with Sodium Green fluorescence. In Wistar rats, ENaC distribution was as follows: microvilli, 10% to 30%; cytoplasm, 60% to 80%; and basolateral membrane, 5% to 10%. Benzamil (10
−8
m
) decreased
22
Na
+
retention by 20% and ouabain (10
−3
m
) increased retention by 40%, whereas ouabain and benzamil combined caused no change. Similar changes were noted in intracellular [Na
+
]. In Dahl rats on a regular salt diet, intracellular [Na
+
] was similar, but the amount of retained
22
Na
+
was less in sensitive versus resistant rats. High salt did not affect ENaC mRNA or protein, nor the benzamil induced decreases in retained
22
Na
+
or intracellular [Na
+
] in either strain. However, high salt increased intracellular [Na
+
] and attenuated the increase in uptake of
22
Na
+
by ouabain in resistant but not sensitive rats, suggesting a decrease in Na
+
-K
+
-ATPase activity only in resistant rats. These findings suggest that both ENaC and Na
+
-K
+
-ATPase regulate Na
+
transport in the choroid plexus. Aberrant regulation of Na
+
transport and of Na
+
-K
+
-ATPase activity, but not of ENaCs, might contribute to the increase in cerebrospinal fluid [Na
+
] in Dahl salt-sensitive rats on a high-salt diet.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献