COMP (Cartilage Oligomeric Matrix Protein), a Novel PIEZO1 Regulator That Controls Blood Pressure

Author:

Wang Hui1,Yuan Ze1,Wang Bianbian2,Li Bochuan1,Lv Huizhen1,He Jinlong1,Huang Yaqian3,Cui Zhen1,Ma Qiannan1,Li Ting4,Fu Yi3,Tan Xiaoli5,Liu Yangping5,Wang Shengpeng4,Wang Changhe2,Kong Wei3ORCID,Zhu Yi1ORCID

Affiliation:

1. Tianjin Key Laboratory of Metabolic Diseases; Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, China (H.W., Z.Y., B.L., H.L., J.H., Z.C., Q.M., Y.Z.).

2. Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, China (B.W., C.W.).

3. Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (Y.H., Y.F., W.K.).

4. Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, China (T.L., S.W.).

5. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, China (X.T., Y.L.).

Abstract

Background: Vascular endothelial cells are critical for maintaining blood pressure (BP) by releasing biologically active molecules, such as nitric oxide. A non-endothelial cell resident matricellular protein, COMP (cartilage oligomeric matrix protein), plays a pivotal role in maintaining cardiovascular homeostasis, but little is known about its regulatory effect on BP. Methods: Mice were infused with AngII (angiotensin II; 450 ng/kg per minute) for 3 days via an osmotic minipump, and BP was monitored by a tail-cuff system. Second-order mesenteric arteries were isolated from mice for microvascular tension measurement. Nitric oxide was detected by an electron paramagnetic resonance technique. Small-interfering RNA transfection, co-immunoprecipitation, bioluminescence resonance energy transfer assays, and patch-clamp electrophysiology experiments were used for further detailed mechanism investigation. Results: COMP −/− mice displayed elevated BP and impaired acetylcholine-induced endothelium-dependent relaxation compared with wild-type mice with or without AngII. Inhibition of eNOS (endothelial nitric oxide synthase) abolished the difference in endothelium-dependent relaxation between wild-type and COMP −/− mice. Furthermore, COMP directly interacted with the C-terminus of Piezo1 via its C-terminus and activated the endogenous Piezo1 currents, which induced intracellular Ca 2+ influx, Ca 2+ /calmodulin-dependent protein kinase type II and eNOS activation, and nitric oxide production. The Piezo1 activator, Yoda1, reduced the difference in endothelium-dependent relaxation and BP in wild-type and COMP /− mice. Moreover, COMP overexpression increased eNOS activation and improved endothelium-dependent relaxation and BP. Conclusions: Our study demonstrated that COMP is a novel Piezo1 regulator that plays a protective role in BP regulation by increasing cellular Ca 2+ influx, eNOS activity, and nitric oxide production.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3