Sex and the G Protein–Coupled Estrogen Receptor Impact Vascular Stiffness

Author:

Ogola Benard O.1ORCID,Clark Gabrielle L.2,Abshire Caleb M.1,Harris Nicholas R.1,Gentry Kaylee L.1,Gunda Shreya S.1ORCID,Kilanowski-Doroh Isabella1ORCID,Wong Tristen J.1,Visniauskas Bruna1ORCID,Lawrence Dylan J.2,Zimmerman Margaret A.1,Bayer Carolyn L.2,Groban Leanne3ORCID,Miller Kristin S.2,Lindsey Sarah H.1ORCID

Affiliation:

1. Department of Pharmacology (B.O.O., C.M.A., N.R.H., K.L.G., S.S.G., I.K.-D., T.J.W., B.V., M.A.Z., S.H.L.), Tulane University, New Orleans, LA.

2. Department of Biomedical Engineering (G.L.C., D.J.L., C.L.B., K.S.M.), Tulane University, New Orleans, LA.

3. Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC (L.G.).

Abstract

Because arterial stiffness increases following menopause, estrogen may be a protective factor. Our previous work indicates that the GPER (G protein–coupled estrogen receptor) mediates estrogen’s vascular actions. In the current study, we assessed arterial stiffening using pulse wave velocity (PWV), a clinically relevant measurement that independently predicts cardiovascular mortality. We hypothesized that genetic deletion of GPER would attenuate sex differences in PWV and would be associated with changes in passive vascular mechanics. Control and Ang II (angiotensin II)–infused male and female wild-type and GPER knockout mice were assessed for blood pressure, intracarotid PWV, cardiac function, passive biaxial mechanics, constitutive modeling, and histology. Sex differences in PWV and left ventricular mass were detected in wild-type mice but absent in GPER knockout and Ang II–infused mice, regardless of genotype. Despite lower PWV, the material stiffness of female wild-type carotids was greater than males in control conditions and was maintained in response to Ang II due to increased wall thickness. PWV positively correlated with unloaded thickness as well as circumferential and axial stiffness only in females. In contrast, blood pressure positively associated with circumferential and axial stiffness in males. Taken together, we found that female wild-type mice were unique in their vascular adaptation to hypertension by increasing wall thickness to maintain stiffness. Given that carotid arteries are easily accessible clinically, systematic assessment of intracarotid PWV in women may provide insight into vascular damage that cannot be assumed from blood pressure measurements alone.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3