Cerebrovascular Regulation During Transient Hypotension and Hypertension in Humans

Author:

Tzeng Yu-Chieh1,Willie Chris K.1,Atkinson Greg1,Lucas Samuel J.E.1,Wong Aaron1,Ainslie Philip N.1

Affiliation:

1. From the Cardiovascular Systems Laboratory (Y.-C.T., A.W.), Physiological Rhythms Unit, Department of Surgery and Anesthesia, University of Otago, Wellington, New Zealand; Department of Human Kinetics (C.K.W., P.N.A.), Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Research Institute for Sport and Exercise Sciences (G.A.), Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology (S.J.E.L.), University...

Abstract

The cerebrovasculature dilates or constricts in response to acute blood pressure changes to stabilize cerebral blood flow across a range of blood pressures. It is unclear, however, whether such dynamic cerebral autoregulation (dCA) is equally effective in responding to falling versus rising blood pressure. In this study we applied a pharmacological approach to evaluate dCA gain to transient hypotension and hypertension and compared this method with 2 established indices of dCA that do not explicitly differentiate between dCA efficacy and falling versus rising blood pressure. Middle cerebral arterial velocity and blood pressure recordings were made in 26 healthy volunteers randomized to 2 protocols. In 10 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with dCA gain to transient hypertension induced with intravenous phenylephrine. In 16 subjects, dCA gain to transient hypotension induced with intravenous nitroprusside was compared with the rate of regulation and autoregulatory index derived from transient hypotension induced with the thigh cuff deflation technique. dCA gain to transient hypotension induced with intravenous nitroprusside was unrelated to dCA gain to transient hypertension induced with intravenous phenylephrine ( r =0.06; P =0.87) and was consistently greater than dCA gain to transient hypertension induced with intravenous phenylephrine (0.57±0.16 versus 0.31±0.20 cm/s per millimeter of mercury; P <0.01). However, dCA gain to transient hypotension induced with intravenous nitroprusside was inversely related to the rate of regulation ( r =−0.52; P =0.037) and autoregulatory index ( r =−0.66; P =0.005). These data indicate that, under our laboratory conditions, dCA appears to be inherently nonlinear with disparate efficacy against rising and falling blood pressure, and dCA gain derived from pharmacologically induced transient hypotension correlates with established nonpharmacological indices of dCA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3