Neonatal Oxygen Exposure in Rats Leads to Cardiovascular and Renal Alterations in Adulthood

Author:

Yzydorczyk Catherine1,Comte Blandine1,Cambonie Gilles1,Lavoie Jean-Claude1,Germain Nathalie1,Ting Shun Yue1,Wolff Julie1,Deschepper Christian1,Touyz Rhian M.1,Lelièvre-Pegorier Martine1,Nuyt Anne Monique1

Affiliation:

1. From the Research Center (C.Y., B.C., G.C., J-C.L., N.G., Y.T.S., J.W., A.M.N.), CHU Sainte-Justine, Departments of Pediatrics and Nutrition, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherche Clinique de Montréal (C.D.), Montreal, Quebec, Canada; Kidney Research Center (R.M.T.), Ottawa, Ontario, Canada; and and INSERM (M.L.-P.), U872, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, Université Paris Descartes, Paris, France. Current...

Abstract

Long-term vascular and renal consequences of neonatal oxidative injury are unknown. Using a rat model, we sought to investigate whether vascular function and blood pressure are altered in adult rats exposed to hyperoxic conditions as neonates. We also questioned whether neonatal O 2 injury causes long-term renal damage, important in the pathogenesis of hypertension. Sprague-Dawley pups were kept with their mother in 80% O 2 or room air from days 3 to 10 postnatal, and blood pressure was measured (tail cuff) from weeks 7 to 15. Rats were euthanized, and vascular reactivity (ex vivo carotid rings), oxidative stress (lucigenin chemiluminescence and dihydroethidium fluorescence), microvascular density (tibialis anterior muscle), and nephron count were studied. In male and female rats exposed to O 2 as newborns, systolic and diastolic blood pressures were increased (by an average of 15 mm Hg); ex vivo, maximal vasoconstriction (both genders) and sensitivity (males only) specific to angiotensin II were increased; endothelium-dependant vasodilatation to carbachol but not to NO-donor sodium nitroprussiate was impaired; superoxide dismutase analogue prevented vascular dysfunction to angiotensin II and carbachol; vascular superoxide production was higher; and capillary density (by 30%) and number of nephrons per kidney (by 25%) were decreased. These data suggest that neonatal hyperoxia leads in the adult rat to increased blood pressure, vascular dysfunction, microvascular rarefaction, and reduced nephron number in both genders. Our findings support the hypothesis of developmental programming of adult cardiovascular and renal diseases and provide new insights into the potential role of oxidative stress in this process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3