Neonatal hyperoxia leads to white adipose tissue remodeling and susceptibility to hypercaloric diet

Author:

Deprez Alyson12,Lukaszewski Marie‐Amélie1,De Sousa Do Outeiro Coraline1,Poletto Bonetto Jéssica H.1,He Ying1,Cloutier Anik1,Ravizzoni Dartora Daniela1,Monique Nuyt Anne1ORCID

Affiliation:

1. Sainte Justine University Hospital (CHU Sainte‐Justine) and Research Centre, Department of Pediatrics, Faculty of Medicine Université de Montréal Montreal Quebec Canada

2. Department of Pharmacology and Physiology, Faculty of Medicine Université de Montréal Montreal Quebec Canada

Abstract

AbstractIndividuals born preterm are at higher risk of cardiovascular and metabolic diseases in adulthood, through mechanisms not completely understood. White adipose tissue in humans and rodents is a dynamic endocrine organ and a critical player in the regulation of metabolic homeostasis. However, the impact of preterm birth on white adipose tissue remains unknown. Using a well‐established rodent model of preterm birth‐related conditions in which newborn rats are exposed during postnatal days 3–10 to 80% of oxygen, we evaluated the impact of transient neonatal hyperoxia on adult perirenal white adipose tissue (pWAT) and liver. We further assessed the effect of a second hit with a high‐fat high‐fructose hypercaloric diet (HFFD). We evaluated 4‐month‐old adult male rats after 2 months of HFFD. Neonatal hyperoxia led to pWAT fibrosis and macrophage infiltration without modification in body weight, pWAT weight, or adipocyte size. In animals exposed to neonatal hyperoxia vs. room air control, HFFD resulted in adipocyte hypertrophy, lipid accumulation in the liver, and increased circulating triglycerides. Overall, preterm birth‐related conditions had long‐lasting effects on the composition and morphology of pWAT, along with a higher susceptibility to the deleterious impact of a hypercaloric diet. These changes suggest a developmental pathway to long‐term metabolic risk factors observed clinically in adults born preterm through programming of white adipose tissue.

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3