Regulation of 3′,5′-cAMP in Preglomerular Smooth Muscle and Endothelial Cells From Genetically Hypertensive Rats

Author:

Cheng Dongmei1,Ren Jin1,Gillespie Delbert G.1,Mi Zaichuan1,Jackson Edwin K.1

Affiliation:

1. From the Department of Pharmacology and Chemical Biology and Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pa.

Abstract

Our previous studies show that inhibition of phosphodiesterase 4 (PDE4) augments agonist-induced renovascular 3′,5′-cAMP secretion more in isolated, perfused kidneys from spontaneously hypertensive rats (SHR) versus Wistar-Kyoto normotensive rats (WKY); however, whether this is because of PDE4 inhibition in renovascular smooth muscle cells or endothelial cells is unknown. Therefore, we examined the effects of 3-isobutyl-1-methylxanthine (broad-spectrum PDE inhibitor) and RO 20-1724 (selective PDE4 inhibitor) on isoproterenol-induced 3′,5′-cAMP levels in cultured WKY and SHR preglomerular vascular smooth muscle and endothelial cells. 3-Isobutyl-1-methylxanthine and RO 20-1724 augmented isoproterenol-induced 3′,5′-cAMP levels similarly in WKY versus SHR endothelial cells. In contrast, 3-isobutyl-1-methylxanthine and RO 20-1724 augmented isoproterenol-induced 3′,5′-cAMP levels significantly more in SHR, compared to WKY, smooth muscle cells ( P <0.0001). In both cell types from both rat strains, mRNA levels for the PDE4B subtype exceeded levels for the PDE4A, PDE4C, and PDE4D subtypes, and small interfering RNA knockdown of PDE4B mRNA in SHR smooth muscle cells increased isoproterenol-induced 3′,5′-cAMP. mRNA levels for the PDE4B2 variant exceeded levels for the PDE4B1, PDE4B3, PDE4B4, and PDE4B5 variants. In vivo, infusions of RO 20-1724 increased the urinary excretion of 3′,5′-cAMP more in SHR than WKY ( P =0.0211). We conclude that (1) the greater effect of PDE4 inhibition on renovascular 3′,5′-cAMP is mediated by inhibition of PDE4 in renovascular smooth muscle cells, not endothelial cells; (2) the major PDE4 subtype in both renovascular smooth muscle and endothelial cells is PDE4B with variant PDE4B2 likely being dominant; and (3) inhibition of PDE4 in vivo increases renal 3′,5′-cAMP levels more in genetically hypertensive rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3