Affiliation:
1. From the Department of Pharmacology and Chemical Biology and Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pa.
Abstract
Our previous studies show that inhibition of phosphodiesterase 4 (PDE4) augments agonist-induced renovascular 3′,5′-cAMP secretion more in isolated, perfused kidneys from spontaneously hypertensive rats (SHR) versus Wistar-Kyoto normotensive rats (WKY); however, whether this is because of PDE4 inhibition in renovascular smooth muscle cells or endothelial cells is unknown. Therefore, we examined the effects of 3-isobutyl-1-methylxanthine (broad-spectrum PDE inhibitor) and RO 20-1724 (selective PDE4 inhibitor) on isoproterenol-induced 3′,5′-cAMP levels in cultured WKY and SHR preglomerular vascular smooth muscle and endothelial cells. 3-Isobutyl-1-methylxanthine and RO 20-1724 augmented isoproterenol-induced 3′,5′-cAMP levels similarly in WKY versus SHR endothelial cells. In contrast, 3-isobutyl-1-methylxanthine and RO 20-1724 augmented isoproterenol-induced 3′,5′-cAMP levels significantly more in SHR, compared to WKY, smooth muscle cells (
P
<0.0001). In both cell types from both rat strains, mRNA levels for the PDE4B subtype exceeded levels for the PDE4A, PDE4C, and PDE4D subtypes, and small interfering RNA knockdown of PDE4B mRNA in SHR smooth muscle cells increased isoproterenol-induced 3′,5′-cAMP. mRNA levels for the PDE4B2 variant exceeded levels for the PDE4B1, PDE4B3, PDE4B4, and PDE4B5 variants. In vivo, infusions of RO 20-1724 increased the urinary excretion of 3′,5′-cAMP more in SHR than WKY (
P
=0.0211). We conclude that (1) the greater effect of PDE4 inhibition on renovascular 3′,5′-cAMP is mediated by inhibition of PDE4 in renovascular smooth muscle cells, not endothelial cells; (2) the major PDE4 subtype in both renovascular smooth muscle and endothelial cells is PDE4B with variant PDE4B2 likely being dominant; and (3) inhibition of PDE4 in vivo increases renal 3′,5′-cAMP levels more in genetically hypertensive rats.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献