Fos-Related Antigen Immunoreactivity After Acute and Chronic Angiotensin II–Induced Hypertension in the Rabbit Brain

Author:

Davern Pamela J.1,Head Geoffrey A.1

Affiliation:

1. From the Neuropharmacology Laboratory, Baker Heart Research Institute, Melbourne, Australia.

Abstract

Several brain regions are proposed as contributing to chronic sympatho-excitatory effects of elevated circulating angiotensin II. However, earlier c-Fos studies have been limited to acute angiotensin II exposure. This study aims to determine brain regions responding with chronic elevated angiotensin II. Rabbits were administered angiotensin II (50 ng/kg per minute) or saline for 3 hours, 3 days, or 14 days. Basal mean arterial pressure was 71±2 mm Hg and increased 23±2 mm Hg, 32±4 mm Hg, and 22±2 mm Hg for 3 hours, 3 days, and 14 days, respectively, with angiotensin II infusion. Neuronal activation was detected using Fos-related antigens, which recognizes all of the known members of the Fos family. Neurons located in the amygdala and area postrema were activated transiently after acute infusion of angiotensin II but were not responsive by days 3 or 14. Neurons located in the nucleus of the solitary tract, caudal ventrolateral medulla, and lateral parabrachial nucleus were activated for ≤3 days after infusion of angiotensin II but were not responsive by day 14, which is consistent with their role in response to baroreceptor pathways that reset with sustained hypertension. The vascular organ of the lamina terminalis and subfornical organ showed sustained but diminishing activation over the 14-day period. However, the downstream hypothalamic nuclei that receive inputs from these nuclei, the paraventricular, supraoptic, and arcuate nuclei, showed marked sustained activation. These findings suggest that there is desensitization of circumventricular organs but sensitization of neurons in hypothalamic regions to long-term angiotensin II infusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3