Insulin-Induced Biphasic Responses in Rat Mesenteric Vascular Bed

Author:

Misurski Derek A.1,Wu Sheng-Qian1,McNeill J. Robert1,Wilson Thomas W.1,Gopalakrishnan Venkat1

Affiliation:

1. From the Department of Pharmacology and the Cardiovascular Risk Factor Reduction Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Abstract

Abstract —The vasodilatory capacity of insulin has been widely reported, yet some investigators have not noted this effect. Because insulin has been shown to enhance endothelin release, we speculated that endothelin could be attenuating insulin-evoked vasodilation. We examined the effect of ex vivo insulin perfusion on vascular resistance by using the Sprague-Dawley rat mesenteric vascular bed. In methoxamine-preconstricted preparations, insulin (3.0 pmol/L to 10 nmol/L) evoked a concentration-dependent decrease in perfusion pressure (PP) with a maximal response of 42.0±9.2%, whereas continuous exposure to 10 nmol/L insulin induced a 51.8±3.5% relaxation. Further exposure to 10 nmol/L insulin resulted in the generation of endothelin and a subsequent loss of the vasodilatory response. Indomethacin had no effect on vascular responses. The vasodilatory response was significantly inhibited by nitric oxide synthase inhibition (20.5±4.2%; P <0.01) and calcium-activated potassium channel blockade (28.5±3.7%; P <0.05). Endothelial denudation attenuated the vasodilatory component (20.3±7.1%; P <0.01) and altered the biphasic pattern of the response. The decline in insulin-evoked vasodilation was significantly prevented by an endothelin-A antagonist (BQ123), an endothelin-B antagonist (BQ788), and nonselective endothelin blockade with both BQ123 and BQ788. These results demonstrate that the endothelium is intimately involved in regulating the vascular response to insulin. Insulin promotes the release of nitric oxide and endothelium-derived hyperpolarizing factor. During sustained exposure to higher concentrations, this vasodilatory effect is countered by the pathological generation of endothelin. Endothelin receptor blockade facilitates the maintenance of vasodilation despite high insulin concentrations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3