Modulation of Small Artery Function by Insulin in Young Women: Role of Adiposity

Author:

Banerjee Moulinath1ORCID,Shaw Linda2,Charlton-Menys Valentyn2,Pemberton Phillip3ORCID,Malik Rayaz Ahmed1ORCID,Cruickshank John Kennedy2ORCID,Austin Clare Elizabeth2ORCID

Affiliation:

1. Centre for Endocrinology & Diabetes Research Group, University of Manchester, Manchester M13 9NT, United Kingdom

2. Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, United Kingdom

3. Department of Clinical Biochemistry, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9NL, United Kingdom

Abstract

Objectives: Vascular dysfunction is common in obesity. Insulin can directly modulate arterial function, but its role is unclear in obesity. We examined the influence of adiposity on direct effects of insulin on human artery responses. Methods: 22 healthy women were stratified by median BMI into lower (LA) (n=11) and higher adiposity (HA) (n=11). Small arteries from gluteal biopsies were tested for contractile responses to Noradrenaline (NA), the endothelium-dependent dilator Carbachol and the endothelium-independent dilator sodium nitroprusside were examined before and after incubation with 100 mU/ml human insulin. Results: Contractile responses were similar in the two groups. Insulin reduced NA-induced contraction in HA [3.5 (2.4-4.6) vs. 2.4 (1.4-3.4) mN/mm: p=0.004] but not those from LA [4.1 (2.8-5.3) vs. 3.7 (2.5-5.0) mN/mm: p=0.33]. Endothelium-dependent dilation (EDD) was significantly reduced in arteries from women in the HA (34.7 (18.8-50.6%)) compared to those from women in the LA (62.3 (46.2- 78.4); p=0.013). Insulin improved EDD (change in maximal dilation before/after insulin (%)) in arteries from the HA (37.7 (18.0 to 57.3) but not the LA (6.3 (-6.5 to 19.1), p=0.007. Conclusion: Reduced EDD evident in arteries from HA subjects improve by incubating in insulin. Hyperinsulinaemia may be necessary in maintaining endothelial function in obesity.

Publisher

Bentham Science Publishers Ltd.

Subject

Immunology and Allergy,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3