Affiliation:
1. From the Department of Physiology, University of North Carolina at Chapel Hill.
Abstract
Abstract
Previous blood flow studies demonstrated that arginine vasopressin (AVP) produces exaggerated renal vasoconstriction in young spontaneously hypertensive rats (SHR) compared with Wistar-Kyoto control rats (WKY). The purpose of the present study was to determine the role of postreceptor calcium signaling pathways in AVP-induced renal vasoconstriction in vivo. Renal blood flow (RBF) was measured by electromagnetic flowmetry in anesthetized, water-loaded, 8-week-old WKY and SHR pretreated with indomethacin to avoid interactions with prostaglandins. AVP was injected into the renal artery to produce a transient 25% to 30% decrease in RBF without affecting arterial pressure. To achieve similar control levels of vasoconstriction, SHR received a lower dose (2 versus 5 ng). Coadministration of nifedipine with AVP produced dose-dependent inhibition of the AVP-induced renal vasoconstriction. Nifedipine exerted maximum inhibition by blocking 30% to 35% of the peak AVP response, indicating the involvement of dihydropyridine-sensitive voltage-dependent calcium channels. To evaluate intracellular calcium mobilization, 8-(
N,N
-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) or heparin was coadministered with AVP. Each agent produced a dose-dependent inhibition of up to 65% of the maximum blood flow change produced by AVP. The degrees of inhibition produced by maximum effective doses of nifedipine and TMB-8 were additive; the combination blocked up to 85% of the response to AVP. These observations indicate that about one third of the AVP-induced constriction of renal resistance vessels is mediated by voltage-dependent L-type calcium channels responsive to the dihydropyridine nifedipine. Approximately two thirds of the change in vascular tone is due to inositol 1,4,5-trisphosphate–mediated calcium mobilization from intracellular sources sensitive to TMB-8 and heparin. The results suggest that the exaggerated renal vascular reactivity to AVP challenge in SHR is probably not due to a strain difference in postreceptor calcium signal transduction. After AVP receptor stimulation, calcium mobilization and calcium entry signaling pathways participate to similar degrees in WKY and SHR.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献