Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38

Author:

Moss Nicholas G.1,Kopple Tayler E.1,Arendshorst William J.1

Affiliation:

1. Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38−/− mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3–25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38−/− mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38−/− mice. Inhibition of nitric oxide (NO) synthase with nitro-l-arginine methyl ester (l-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38−/− ( P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38−/− mice ( P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains ( P < 0.005) but was ineffective when administered after l-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by l-NAME and indomethacin ( P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways.

Publisher

American Physiological Society

Subject

Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3