Neuroprotection by Freezing Ischemic Penumbra Evolution Without Cerebral Blood Flow Augmentation With a Postsynaptic Density-95 Protein Inhibitor

Author:

Bråtane Bernt T.1,Cui Hong1,Cook Douglas J.1,Bouley James1,Tymianski Michael1,Fisher Marc1

Affiliation:

1. From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada.

Abstract

Background and Purpose— The purpose of this study was to determine whether neuroprotection is feasible without cerebral blood flow augmentation in experimental permanent middle cerebral artery occlusion. Methods— Rats were subjected to permanent middle cerebral artery occlusion by the suture occlusion method and were treated 1 hour thereafter with a single 5-minute intravenous infusion of the postsynaptic density-95 protein inhibitor Tat-NR2B9c (7.5 mg/kg) or saline (n=8/group). Arterial spin-labeled perfusion-weighted MRI and diffusion weighted MRI were obtained with a 4.7-T Bruker system at 30, 45, 70, 90, 120, 150, and 180 minutes postmiddle cerebral artery occlusion to determine cerebral blood flow and apparent diffusion coefficient maps, respectively. At 24 hours, animals were neurologically scored (0 to 5), euthanized, and the brains stained with 2–3-5-triphenyl tetrazolium chloride to ascertain infarct volumes corrected for edema. Additionally, the effects of Tat-NR2B9c on adenosine 5′-triphosphate levels were measured in vitro in neurons subjected to oxygen–glucose deprivation. Results— Final infarct volume was decreased by 30.3% in the Tat-NR2B9c-treated animals compared with controls ( P =0.028). There was a significant improvement in 24 hours neurological scores in the Tat-NR2B9c group compared with controls, 1.8±0.5 and 2.8±1.0, respectively ( P =0.021). Relative to controls, Tat-NR2B9c significantly attenuated diffusion-weighted imaging lesion growth and preserved the diffusion-weighted imaging/perfusion-weighted imaging mismatch (ischemic penumbra) without affecting cerebral blood flow in the ischemic core or penumbra. Tat-NR2B9c treatment of primary neuronal cultures resulted in 26% increase in cell viability and 34% greater adenosine 5′-triphosphate levels after oxygen–glucose deprivation. Conclusions— Preservation of adenosine 5′-triphosphate levels in vitro and neuroprotection in permanent middle cerebral artery occlusion in rats is achievable without cerebral blood flow augmentation using a postsynaptic density-95 protein inhibitor.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3