Rapid Morphologic Plasticity of Peri-Infarct Dendritic Spines After Focal Ischemic Stroke

Author:

Brown Craig E.1,Wong Charles1,Murphy Timothy H.1

Affiliation:

1. From the Department of Psychiatry, Brain Research Center, University of British Columbia, Vancouver, Canada.

Abstract

Background and Purpose— Focal stroke is associated with cell death, abnormal synaptic activity, and neurologic impairments. Given that many of these neuropathologic processes can be attributed to events that occur shortly after injury, it is necessary to understand how stroke affects the structure of neurons in surviving peri-infarct regions, particularly at the level of the dendritic spines, which transmit normal and potentially abnormal and injurious synaptic signaling. Recently, we described ischemia-induced changes in the structure of layer 1 dendritic tufts of transgenic mice expressing YFP in layer 5 cortical neurons. However, these in vivo imaging experiments could not address ischemia-related phenomena that occur in deeper cortical structures/layers, other cortical regions, or submicron changes in dendritic spine structure. Methods— Focal stroke was induced in the forelimb sensorimotor cortex by the photothrombotic method. Two, 6, and 24 hours after stroke, brains were processed for Golgi-Cox staining to permit a detailed analysis of primary apical dendritic spine structure from layer 2/3 and 5 cortical pyramidal neurons. Results— Photothrombotic stroke caused a rapid deterioration of neurons, as revealed by Golgi-Cox labeling, in the infarct core that could be readily distinguished from surviving peri-infarct regions. Analysis of >15 000 dendritic spines revealed that although many spines were lost in the peri-infarct cortex during the first 24 hours after stroke (≈38% lost), spines that remained were significantly longer (≈25% at 6 hours). Furthermore, these effects were found in both layer 2/3 and 5 neurons and were restricted primarily to peri-infarct regions (<200 μm from the infarct border). Conclusions— These rapid changes in dendritic spine number and length may reflect an early adaptive response of potentially vulnerable peri-infarct neurons coping with postischemic spreading depression-like depolarizations and the loss of presynaptic contacts.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3