Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke

Author:

Wang Kai1,Shou Qinyang1,Ma Samantha J.1,Liebeskind David2,Qiao Xin J.3,Saver Jeffrey2,Salamon Noriko3,Kim Hosung1,Yu Yannan4,Xie Yuan4,Zaharchuk Greg4,Scalzo Fabien2,Wang Danny J.J.1

Affiliation:

1. From the Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles (K.W., Q.S., S.J.M., H.K., D.J.J.W.)

2. Department of Neurology (D.L., J.S., F.S.), University of California, Los Angeles

3. Department of Radiology (X.J.Q., N.S.), University of California, Los Angeles

4. Department of Radiology, Stanford University, Palo Alto, CA (Y.Y., Y.X., G.Z.).

Abstract

Background and Purpose— Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magnetic resonance imaging requires injection of contrast, whereas computed tomography perfusion requires high doses of ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)–based algorithm for assisting the selection of suitable patients with acute ischemic stroke for endovascular treatment based on 3-dimensional pseudo-continuous arterial spin labeling (pCASL). Methods— A total of 167 image sets of 3-dimensional pCASL data from 137 patients with acute ischemic stroke scanned on 1.5T and 3.0T Siemens MR systems were included for neural network training. The concurrently acquired dynamic susceptibility contrast magnetic resonance imaging was used to produce labels of hypoperfused brain regions, analyzed using commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold cross-validation. The eligibility for endovascular treatment was determined retrospectively based on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke). The trained DL algorithm was further applied on twelve 3-dimensional pCASL data sets acquired on 1.5T and 3T General Electric MR systems, without fine-tuning of parameters. Results— The DL algorithm can predict the dynamic susceptibility contrast–defined hypoperfusion region in pCASL with a voxel-wise area under the curve of 0.958, while the 6 ML algorithms ranged from 0.897 to 0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When applied to the GE pCASL data, the DL algorithm achieved a voxel-wise area under the curve of 0.94 and a subject-level accuracy of 92% for endovascular treatment eligibility. Conclusions— pCASL perfusion magnetic resonance imaging in conjunction with the DL algorithm provides a promising approach for assisting decision-making for endovascular treatment in patients with acute ischemic stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3