Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization.

Author:

Clark N R1,Reichek N1,Bergey P1,Hoffman E A1,Brownson D1,Palmon L1,Axel L1

Affiliation:

1. Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia 19104.

Abstract

BACKGROUND Conventional cardiac imaging methods do not depict true segmental myocardial shortening, since they cannot determine segment length between fixed points in the myocardium. METHODS AND RESULTS We used electrocardiographically gated magnetic resonance imaging with spatial modulation of magnetization to noninvasively "tag" the myocardium with dark stripes at uniform 7-mm intervals center to center at end diastole. We then determined end-systolic stripe separation and thereby calculated circumferential shortening. When end systole was not reached in the first image series, a second temporally overlapped series starting in late systole was used to determine late-systolic shortening. Septal, anterior, lateral, and inferior segments were assessed at endocardium, midwall, and epicardium on five midventricular short-axis sections each in 10 normal volunteers. A transmural gradient in circumferential shortening was observed, with the percentage of endocardial segment shortening consistently greater than epicardial segment shortening (epicardial, 22 +/- 5%; midwall, 30 +/- 6%; and endocardial, 44 +/- 6%; p less than 0.0001 by analysis of variance). Circumferential shortening varied from apex to base with slices closer to the base of the left ventricle showing less shortening at the midwall (28 +/- 9%) and endocardium (39 +/- 6%) than more apical slices at the midwall (34 +/- 13%) and endocardium (49 +/- 9%) (p less than 0.05 and p less than 0.01, respectively, by analysis of variance). CONCLUSIONS Transmural and longitudinal heterogeneity of circumferential shortening is present in the normal human left ventricle. Magnetic resonance imaging with spatial modulation of magnetization is a powerful new tool for assessment of circumferential shortening and provides information unobtainable with conventional imaging methods.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3