Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue

Author:

English Elizabeth J.12,Samolyk Bryanna L.1ORCID,Gaudette Glenn R.13ORCID,Pins George D.1ORCID

Affiliation:

1. Biomedical Engineering Department Worcester Polytechnic Institute Worcester Massachusetts USA

2. Tessera Therapeutics Somerville Massachusetts USA

3. Department of Engineering Boston College Newton Massachusetts USA

Abstract

AbstractCardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold‐standard solution for total heart failure is a heart transplantation. An alternative to total‐organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell‐populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS‐CM), which is crucial for increasing scaffold contractile properties. hiPS‐CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin‐43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.

Funder

National Institutes of Health

American Heart Association

Publisher

Wiley

Subject

Metals and Alloys,Biomedical Engineering,Biomaterials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3