Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries.

Author:

Quillen J E1,Sellke F W1,Brooks L A1,Harrison D G1

Affiliation:

1. University of Iowa, Cardiovascular Center, Iowa City.

Abstract

We examined the effects of ischemia with and without reperfusion on endothelium-dependent and -independent vascular relaxation in both conduit and resistance coronary arteries. Studies were performed on dogs under control conditions (n = 13) or after 1 hour of circumflex coronary artery occlusion with (n = 10) or without (n = 8) 1 hour of reperfusion. Rings of obtuse marginal branches of the left circumflex coronary artery (conduit arteries) were studied in organ chambers. Coronary microvessels (110-220-microns diameter) were studied in a pressurized state with an in vitro microvessel imaging apparatus. Relaxation was evaluated after preconstriction with prostaglandin F2 alpha and U46619 (a thromboxane A2 analogue) in conduit and resistance vessels, respectively. Conduit vessel function was not altered by ischemia with or without reperfusion. Endothelium-dependent microvascular relaxation was depressed in response to acetylcholine, ADP, and calcium ionophore A23187 after ischemia with reperfusion compared with control relaxation (ED50 as -log[M]: 6.0 +/- 0.2 [p less than 0.05], 5.1 +/- 0.4 [p less than 0.05], and 5.8 +/- 0.1 versus 6.8 +/- 0.2, 6.8 +/- 0.2, and 6.6 +/- 0.2, respectively). Ischemia without reperfusion modestly altered microvascular endothelium-dependent relaxation. Microvascular relaxation to nitroglycerin was not altered by ischemia with reperfusion. We conclude that 1) endothelium-dependent relaxation in large epicardial coronary arteries is relatively refractory to ischemia with or without reperfusion, 2) ischemia alone produces mild alterations of coronary microvascular reactivity, 3) ischemia followed by reperfusion produces a marked and selective impairment of endothelium-dependent responses in the coronary microcirculation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3