Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic backscatter.

Author:

Wickline S A1,Verdonk E D1,Wong A K1,Shepard R K1,Miller J G1

Affiliation:

1. Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110.

Abstract

BACKGROUND Remodeling of myocardial tissue after infarction may culminate in the development of either a well-healed scar or a thin, expanded heart wall segment that predisposes to ventricular aneurysm formation, congestive heart failure, or ventricular tachycardia. The three-dimensional architecture of mature human infarct tissue and the mechanisms that determine it have not been elucidated. We have previously shown that quantitative ultrasonic backscatter can be used to define the transmural organization of human myofibers in the normal ventricular wall by measuring the dependence of backscatter on the angle of insonification, or ultrasonic anisotropy. We propose that measurement of ultrasonic anisotropy of backscatter may permit quantitative characterization of the transmural architecture of tissue from areas of myocardial infarction and facilitate identification of fundamental mechanisms of remodeling of the ventricular wall. METHODS AND RESULTS We measured integrated backscatter in 33 transmural sections from 12 cylindrical biopsy specimens (1.4-cm diameter) sampled from central regions of mature infarction in six explanted fixed human hearts. Tissue samples were insonified in two-degree steps around their entire circumference at successive transmural levels with a 5-MHz broad-band piezoelectric transducer. Backscatter radio frequency data were gated from the center of each specimen, and spectral analysis was performed on the gated radio frequency for the computation of integrated backscatter. Histological morphometric analysis was performed on each specimen for determination of the predominant fiber orientation and the percentage of tissue infarcted at consecutive transmural levels. The average percentage of tissue infarcted for all transmural levels was 49 +/- 3% (range, 13-80%). Histological attributes varied from patchy fibrosis to extensive confluent zones of scar tissue. The angle-averaged integrated backscatter for all transmural levels in infarct tissue was approximately 5 dB greater than that previously measured in normal tissue in our laboratory (-48.3 +/- 0.5 versus -53.4 +/- 0.4 dB, infarct versus normal). Marked anisotropy of backscatter was observed in tissue from areas of infarction and was characterized by a sinusoid-like dependence on the angle of insonification at each transmural level. Insonification perpendicular to infarct fibers yielded values for integrated backscatter 14.8 +/- 0.5 dB greater than those for insonification parallel to these fibers. Juxtaposition of the sinusoid-like anisotropy functions from all consecutive transmural levels demonstrated a progressive shift in the orientation of scar tissue elements from epicardial to endocardial levels of 14.6 +/- 1.5 degrees/mm of tissue. The transmural shift in fiber orientation per millimeter of tissue from the area of infarction exceeded that previously measured for normal tissue (9.2 +/- 0.7 degrees/mm) by 59%. This marked augmentation in angular shift per millimeter of tissue results from a generalized structural rearrangement (or reorientation) of fibers across the entire ventricular wall in the infarct zone that we hypothesize is determined in part by dynamic mechanical forces, imposed by the surrounding functional normal tissue, that tether the "infarcted" tissue. CONCLUSIONS Myocardial tissue from areas of myocardial infarction manifests substantial anisotropy of ultrasonic scattering that may be useful for quantitative characterization of the alignment and overall three-dimensional anatomic organization of mature infarct scars.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3