Cardiac Ultrasonic Tissue Characterization in Myocardial Infarction Based on Deep Transfer Learning and Radiomics Features

Author:

Jamthikar Ankush D.ORCID,Hathaway Quincy AORCID,Maganti Kameswari,Hamirani Yasmin,Bokhari Sabahat,Yanamala Naveena,Sengupta Partho P.ORCID

Abstract

AbstractObjectiveAcute myocardial infarction (MI) alters cardiomyocyte geometry and architecture, leading to changes in the acoustic properties of the myocardium. This study examines ultrasomics — a novel cardiac ultrasound-based radiomics technique to extract high-throughput pixel-level information from images—for identifying infarcted myocardium.MethodologyA retrospective multicenter cohort of 380 participants was split into two groups: a model development cohort (n=296; 101 MI cases, 195 controls) and an external validation cohort (n=84; 40 MI cases, 44 controls). Handcrafted and transfer learning-derived deep ultrasomics features were extracted from 2-chamber and 4-chamber echocardiographic views and ML models were built to detect patients with MI and infarcted myocardium within individual views. Myocardial infarct localization via texture features was determined using Shapley additive explanations. All the ML models were trained using 10-fold cross-validation and assessed on an external test dataset, using the area under the curve (AUC).ResultsThe ML model, leveraging segment-level handcrafted ultrasomics features identified MI with AUCs of 0.93 (95% CI: 0.97-0.97) and 0.83 (95% CI: 0.74-0.89) at the patient-level and view-level, respectively. A model combining handcrafted and deep ultrasomics provided incremental information over deep ultrasomics alone (AUC: 0.79, 95% CI: 0.71-0.85 vs. 0.75, 95% CI: 0.66-0.82). Using a view-level ultrasomic model we identified texture features that effectively discriminated between infarcted and non-infarcted segments (p<0.001) and facilitated parametric visualization of infarcted myocardium.ConclusionThis pilot study highlights the potential of cardiac ultrasomics in distinguishing healthy and infarcted myocardium and opens new opportunities for advancing myocardial tissue characterization using echocardiography.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3