Patient‐Specific 3‐Dimensional–Bioprinted Model for In Vitro Analysis and Treatment Planning of Pulmonary Artery Atresia in Tetralogy of Fallot and Major Aortopulmonary Collateral Arteries

Author:

Tomov Martin L.1,Cetnar Alexander1,Do Katherine2,Bauser‐Heaton Holly234,Serpooshan Vahid123

Affiliation:

1. Department of Biomedical Engineering Emory University School of Medicine and Georgia Institute of Technology Atlanta GA

2. Department of Pediatrics Emory University School of Medicine Atlanta GA

3. Children's Healthcare of Atlanta Atlanta GA

4. Sibley Heart Center at Children's Healthcare of Atlanta Atlanta GA

Abstract

Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient‐specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions. Methods and Results From patient‐specific scans obtained via computer tomography or 3‐dimensional (3D) rotational angiography, we generated digital 3D models of the arteries. Subsequently, in vitro models of tetralogy of Fallot with major aortopulmonary collateral arteries were first 3D printed using biocompatible resins and next bioprinted using gelatin methacrylate hydrogel to simulate neonatal vasculature or second‐order branches of an older patient with tetralogy of Fallot with major aortopulmonary collateral arteries. Printed models were used to study creation of extraluminal connection between an atretic PA and a major aortopulmonary collateral artery using a catheter‐based interventional method. Following the recanalization, engineered PA constructs were perfused and flow was visualized using contrast agents and x‐ray angiography. Further, computational fluid dynamics modeling was used to analyze flow in the recanalized model. Conclusions New 3D‐printed and computational fluid dynamics models for vascular atresia were successfully created. We demonstrated the unique capability of a printed model to develop a novel technique for establishing blood flow in atretic vessels using clinical imaging, together with 3D bioprinting–based tissue engineering techniques. Additive biomanufacturing technologies can enable fabrication of functional vascular phantoms to model PA stenosis conditions that can help develop novel clinical applications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3