Turn-table micro-CT scanner for dynamic perfusion imaging in mice: design, implementation, and evaluation

Author:

Allphin A JORCID,Nadkarni R,Clark D P,Gil C J,Tomov M L,Serpooshan V,Badea C TORCID

Abstract

Abstract Objective. This study introduces a novel desktop micro-CT scanner designed for dynamic perfusion imaging in mice, aimed at enhancing preclinical imaging capabilities with high resolution and low radiation doses. Approach. The micro-CT system features a custom-built rotating table capable of both circular and helical scans, enabled by a small-bore slip ring for continuous rotation. Images were reconstructed with a temporal resolution of 3.125 s and an isotropic voxel size of 65 µm, with potential for higher resolution scanning. The system’s static performance was validated using standard quality assurance phantoms. Dynamic performance was assessed with a custom 3D-bioprinted tissue-mimetic phantom simulating single-compartment vascular flow. Flow measurements ranged from 1.5 1 to 9 ml min−1, with perfusion metrics such as time-to-peak, mean transit time, and blood flow index calculated. In vivo experiments involved mice with different genetic risk factors for Alzheimer’s and cardiovascular diseases to showcase the system’s capabilities for perfusion imaging. Main Results. The static performance validation confirmed that the system meets standard quality metrics, such as spatial resolution and uniformity. The dynamic evaluation with the 3D-bioprinted phantom demonstrated linearity in hemodynamic flow measurements and effective quantification of perfusion metrics. In vivo experiments highlighted the system’s potential to capture detailed perfusion maps of the brain, lungs, and kidneys. The observed differences in perfusion characteristics between genotypic mice illustrated the system’s capability to detect physiological variations, though the small sample size precludes definitive conclusions. Significance. The turn-table micro-CT system represents a significant advancement in preclinical imaging, providing high-resolution, low-dose dynamic imaging for a range of biological and medical research applications. Future work will focus on improving temporal resolution, expanding spectral capabilities, and integrating deep learning techniques for enhanced image reconstruction and analysis.

Funder

National Institute on Aging

Division of Chemical, Bioengineering, Environmental, and Transport Systems

National Heart, Lung, and Blood Institute

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3