Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels.

Author:

Kontos H A,Raper A J,Patterson J L

Abstract

The mechanism by which the local effect of CO2ON pial arterioles is exerted was examined in anesthetized cats equipped with a cranial window for the direct observation of the microcirculation of the parietal cortex. The dilation of pial arterioles in response to application of artificial cerebrospinal fluid with low pH was the same whether or not the PCO2 of the solution was maintained in the normal range or markedly increased. The constriction of pial arterioles in response to application of artificial cerebrospinal fluid with high pH was the same whether or not the PCO2 of the solution was maintained in the normal range or markedly decreased. Finally, pial arterioles did not change their caliber in response to application of cerebrospinal fluid with unchanged pH but markedly increased or decreased Pco, or bicarbonate ion concentration. These results show that the action of CO2 on cerebral vessels is exerted via changes in extracellular fluid pH and that molecular CO2 and bicarbonate ions do not have independent vasoactivity on these vessels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3