Evidence for Mas-Mediated Bradykinin Potentiation by the Angiotensin-(1-7) Nonpeptide Mimic AVE 0991 in Normotensive Rats

Author:

Carvalho Mariana B.L.1,Duarte Fernanda V.1,Faria-Silva Raphael1,Fauler Beatrix1,da Mata Machado Leonor T.1,de Paula Renata D.1,Campagnole-Santos Maria J.1,Santos Robson A.S.1

Affiliation:

1. From the Laboratory of Hypertension, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.

Abstract

We evaluated the effect of the nonpeptide mimic of angiotensin (Ang)-(1-7), AVE 0991, on the hypotensive effect of bradykinin (BK). Increasing doses of intra-arterial or intravenous BK were administered before and 30 minutes after the beginning of AVE 0991 infusion. The effect of AVE 0991 on plasma Ang-converting enzyme activity was tested using Hip-His-Leu as the substrate. The interaction of AVE 0991 with Ang-converting enzyme in vivo was tested by determining its effect on the pressor action of Ang I or Ang II. AVE 0991 produced a significant and similar potentiation of intra-arterial or intravenous bradykinin. AVE 0991 did not inhibit plasma Ang-converting enzyme activity in vitro or the pressor effect of Ang I in vivo. N W -nitro- l -arginine methyl ester or D-Ala 7 -Ang-(1-7) administration abolished the BK potentiating effect of AVE 0991. We further examined the BK-potentiating effect of AVE 0991, evaluating its effect on NO production in rabbit endothelial cells. The NO release was measured using the 4-amino-5-methylamino-2′-7′-difluorofluorescein diacetate. A synergistic effect of AVE 0991 and BK on NO release was observed. These results suggest that AVE 0991 potentiates bradykinin through an Ang-converting enzyme–independent, NO-dependent receptor Mas-mediated mechanism. This effect may contribute to the improvement of endothelial function by AVE 0991 in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3