Aminoguanidine and Aortic Wall Mechanics, Structure, and Composition in Aged Rats

Author:

Cantini Caroline1,Kieffer Pascal1,Corman Bruno1,Limiñana Patrick1,Atkinson Jeffrey1,Lartaud-Idjouadiene Isabelle1

Affiliation:

1. From the Laboratoire de Pharmacologie Cardiovasculaire, Faculté de Pharmacie, Université Henri Poincaré-Nancy 1 (C.C., P.K., P.L., J.A., I. L.-I.), Nancy, France; and Service de Biologie Cellulaire, C.E.A./Saclay (B.C.), Gif sur Yvette, France.

Abstract

With aging, the aortic wall becomes stiffer. This could be because of changes in wall stress or composition. We investigated whether a specific change in wall composition, ie, accumulation of advanced glycation end products (AGEs) on the extracellular matrix, is a major factor. We measured aortic mechanics, geometry, and composition in 3-, 10-, 15-, 20-, and 30-month-old inbred normotensive Wistar-Glaxo/Rijswick rats and in a group of 30-month-old rats treated from 20 months onward with aminoguanidine (AG, 42 mg/kg per day), an inhibitor of AGE formation. Thoracoabdominal aortic (pressure) pulse-wave velocity (PWV) increased progressively with age (44% from 3 to 30 months). This age-related increase in aortic PWV was not related to changes in wall stress. For all ages, central (and peripheral) aortic mean blood pressures were not statistically different. Dilatation occurred (18% increase in internal diameter from 3 to 30 months), but this was accompanied by outward hypertrophic remodeling, with an increase in the medial cross-sectional area of 95% and in the ratio of medial thickness to internal diameter of 29%. Wall stress decreased with age (−34%). There was an increase in the ratio of elastic modulus (calculated from the Moens-Korteweg equation) to wall stress (calculated from the Lamé equation, 117% from 3 to 30 months), suggesting that a change in the composition of the wall is responsible for the age-linked increase in wall stiffness. Dry weight decreased slightly but significantly (−14%) with age. Total protein, elastin, collagen, and nonscleroprotein protein [total−(elastin+collagen)] contents did not change with age, but calculated densities of all 4 were halved (as the medial cross-sectional area doubled). The elastin/collagen ratio was statistically similar at all ages. The only significant effect of AG treatment was a fall in PWV (−20%), leading to a fall in the elastic modulus/wall stress ratio (−27% at 10 months of AG treatment versus 30 months of no treatment). In conclusion, the age-related increase in aortic wall stiffness is prevented by 10 months of treatment with AG, which has no effect on wall stress or composition, suggesting that AG may improve aortic wall stiffness by lowering the degree of AGE-induced cross-linking of the extracellular matrix scleroproteins, such as collagen.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference31 articles.

1. Nichols WW O’Rourke MF eds. McDonald’s Blood Flow in Arteries. London UK: Edward Arnold Publishers Ltd; 1990: 399–402.

2. Pulse pressure, arterial stiffness, and cardiovascular risk

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3