Effect of chemodenervation on the cerebral vascular and microvascular response to hypoxia.

Author:

Anwar M1,Kissen I1,Weiss H R1

Affiliation:

1. Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635.

Abstract

This study evaluated the effect of bilateral carotid chemodenervation on the cerebrovascular response to hypoxia in conscious rats. Cerebral blood flow was measured using 4-iodo[N-methyl-14C]antipyrine, and the total and perfused microvasculature was studied by injection of fluorescein isothiocyanate dextran and alkaline phosphatase staining. To maintain constant PCO2, hypoxia was achieved in chemoreceptor-intact rats by the use of 4% CO2-8% O2-88% N2 and in chemodenervated rats by the administration of 8% O2-92% N2. Blood gas and hemodynamic parameters were similar in the two groups of rats. Chemodenervation had no significant effect on either resting blood flow or the perfused microvasculature during normoxia. A significant increase in cerebral blood flow (from 71 +/- 3 to 138 +/- 9 ml/min/100 g in control and from 91 +/- 5 to 127 +/- 7 ml/min/100 g in chemodenervated rats) and in the percent of cerebral arterioles and capillaries perfused occurred in both hypoxic control and chemodenervated rats. In chemoreceptor-intact rats, the greatest increase in blood flow and in perfused microvasculature occurred in caudal structures (medulla and pons) in comparison with rostral structures (cortex, thalamus, and hypothalamus). In chemodenervated rats, a similar increase in blood flow and perfused microvasculature occurred in all brain regions, with no regional differences. Thus, chemodenervation did not affect the overall cerebral blood flow or the microvascular response to hypoxia; however, rostral-to-caudal regional differences in the hypoxic response were lost after chemodenervation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3