The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors

Author:

Smith C. A.,Chenuel B. J.,Henderson K. S.,Dempsey J. A.

Abstract

The relative importance of peripheral vs. central chemoreceptors in causing apnea/unstable breathing during sleep is unresolved. This has never been tested in an unanesthetized preparation with intact carotid bodies. We studied three unanesthetized dogs during normal sleep in a preparation in which intact carotid body chemoreceptors could be reversibly isolated from the systemic circulation and perfused. Apneic thresholds and the CO2 reserve (end-tidal Pco2 eupneic − end-tidal Pco2 apneic threshold) were determined using a pressure support ventilation technique. Dogs were studied when both central and peripheral chemoreceptors sensed transient hypocapnia induced by the pressure support ventilation and again with carotid body isolation such that only the central chemoreceptors sensed the hypocapnia. We observed that the CO2 reserve was ≅4.5 Torr when the carotid chemoreceptors sensed the transient hypocapnia but more than doubled (>9 Torr) when only the central chemoreceptors sensed hypocapnia. Furthermore, the expiratory time prolongations observed when only central chemoreceptors were exposed to hypocapnia differed from those obtained when both the central and peripheral chemoreceptors sensed the hypocapnia in that they 1) were substantially shorter for a given reduction in end-tidal Pco2, 2) showed no stimulus: response relationship with increasing hypocapnia, and 3) often occurred at a time (>45 s) beyond the latency expected for the central chemoreceptors. These findings agree with those previously obtained using an identical pressure support ventilation protocol in carotid body-denervated sleeping dogs (Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. J Appl Physiol 94: 155–164, 2003). We conclude that hypocapnia sensed at the carotid body chemoreceptor is required for the initiation of apnea following a transient ventilatory overshoot in non-rapid eye movement sleep.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking O2, CO2 and breathing during wakefulness and sleep;The Journal of Physiology;2023-09-26

2. Control of Breathing;Seminars in Respiratory and Critical Care Medicine;2023-07-11

3. Treatment-emergent central sleep apnea;Encyclopedia of Sleep and Circadian Rhythms;2023

4. Induction of Day-Time Periodic Breathing is Associated With Augmented Reflex Response From Peripheral Chemoreceptors in Male Patients With Systolic Heart Failure;Frontiers in Physiology;2022-05-31

5. Breathing during sleep;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3