Contraction modulates the capacity for protein synthesis during growth of neonatal heart cells in culture.

Author:

McDermott P J1,Morgan H E1

Affiliation:

1. Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822.

Abstract

Neonatal ventricular myocytes that were incubated in a well-defined serum-free medium containing 50 mM KCl did not contract and maintained stable cell size, as assessed by the protein/DNA ratio. The present study utilized KCl-arrested cells to examine the effect of constant rates of synchronous contraction in normal [K+]o (4 mM) as a physiological stimulus for myocyte growth. Cell growth increased following the onset of contraction when measured over 3 days. The rate of protein synthesis was accelerated in parallel by contraction, but the rate of protein degradation remained similar to rates in noncontracting cells. The capacity for protein synthesis was estimated by total RNA content and was increased in contracting as compared with KCl-arrested cells. This increase was accompanied by faster rates of RNA synthesis as determined from the incorporation of [3H]uridine into RNA and the specific activity of the cellular UTP pool. The rate of RNA degradation was accelerated during contraction but the difference between the rates of RNA synthesis and degradation resulted in net RNA accumulation of 49% after 3 days. These data demonstrated that 1) contractile activity stimulated myocyte growth through an increased capacity for protein synthesis and 2) the increased capacity for protein synthesis involved acceleration of the rate of RNA synthesis. Since enhancement of protein synthetic capacity is a common feature of myocyte hypertrophy in vivo and in vitro, this model can be used to examine the regulation of ribosome synthesis during hypertrophic growth.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3