Different roles of the cardiac Na+/Ca2+-exchanger in ouabain-induced inotropy, cell signaling, and hypertrophy

Author:

Bai Yan12,Morgan Eric E.3,Giovannucci David R.4,Pierre Sandrine V.1,Philipson Kenneth D.5,Askari Amir1,Liu Lijun1

Affiliation:

1. Department of Biochemistry and Cancer Biology,

2. Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

3. Department of Physiology and Pharmacology, and

4. Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio;

5. Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California; and

Abstract

Previous studies have shown that digitalis drugs, acting as specific inhibitors of cardiac Na+/K+-ATPase, not only cause positive inotropic effects, but also activate cell signaling pathways that lead to cardiac myocyte hypertrophy. A major aim of this work was to assess the role of Na+/Ca2+-exchanger, NCX1, in the above two seemingly related drug effects. Using a mouse with ventricular-specific knockout (KO) of NCX1, ouabain-induced positive inotropy that was evident in isolated wild-type (Wt) hearts was clearly reduced in KO hearts. Ouabain also increased Ca2+transient amplitudes in Wt myocytes, but not in KO myocytes. Ouabain-induced activations of ERK 1/2 were noted in Wt myocytes, but not in KO myocytes; however, ouabain activated PI3K1A and Akt in both Wt and KO myocytes. Protein synthesis rate, as a measure of hypertrophy, was increased by ouabain in Wt and KO myocytes; these drug effects were prevented by a PI3K inhibitor but not by a MEK/ERK inhibitor. Hypertrophy caused by ET-1, but not that induced by ouabain, was accompanied by upregulation of BNP gene in Wt and KO myocytes. The findings indicate 1) the necessity of NCX1 for positive inotropic action of ouabain; 2) the irrelevance of NCX1 and ERK 1/2 activation to ouabain-induced hypertrophy; and 3) that hypertrophy caused by ouabain through the activation of PI3K1A/Akt pathway is likely to be beneficial to the heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3