Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium.

Author:

Balke C W1,Lesh M D1,Spear J F1,Kadish A1,Levine J H1,Moore E N1

Affiliation:

1. Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104.

Abstract

Experiments were performed on canine superfused ventricular epicardial tissue slices to determine the effects of 1.0-2.0 mM heptanol, an uncoupling agent, on conduction longitudinal and transverse to myocardial fiber orientation. Conduction velocities were measured between proximal and distal pairs of epicardial electrodes oriented transverse and longitudinal to the direction of a conducted wavefront evoked by pacing at a basic cycle length of 2,000 msec from one margin of the tissue before and after the addition of heptanol. In a separate group of tissues, the dual bipolar orthogonal electrode was used to sequentially map epicardial activation at 40 to 45 sites in a 1 cm x 2 cm area before and 30 minutes after the introduction of heptanol. In a third group of tissues, transmembrane potentials were recorded with standard microelectrode techniques to determine the effects of heptanol on action potential characteristics. Heptanol did not significantly effect action potential amplitude or maximum rate of depolarization. After 1.0 mM heptanol, conduction velocity began to decrease in 1-2 minutes and reached a steady state in 15-20 minutes. Conduction velocity in the longitudinal direction decreased from a control value of 0.56 +/- 0.13 to 0.46 +/- 0.10 M/sec (+/- SD) at 30 minutes after heptanol (p = 0.005). In the transverse direction, it decreased from 0.24 +/- 0.09 to 0.17 +/- 0.05 M/sec (p = 0.002). The ratio of longitudinal to transverse conduction velocities increased from 2.54 +/- 1.00 to 2.94 +/- 0.82 (p = 0.042). Thus, heptanol preferentially slowed conduction in the transverse direction. Because heptanol did not greatly influence active membrane properties, we used cable equations to calculate the time course of the change in effective junctional resistivity, which rose from 133.2 omega.cm before heptanol to 312.2 omega.cm 30 minutes after heptanol administration. We conclude that heptanol slows conduction velocity by selectively increasing junctional resistivity. The preferential slowing of conduction in the transverse direction is most likely due to the fact that more junctional resistances are encountered per unit distance in the transverse than in the longitudinal direction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3