Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization.

Author:

Rohr S1,Schölly D M1,Kléber A G1

Affiliation:

1. Department of Physiology, University of Bern, Switzerland.

Abstract

A culture method was developed that permits patterning of the growth of ventricular myocytes of neonatal rats. Regions were created on the culture substrate that either prevented (photoresist coat) or supported (glass surface) attachment of cells. In this way the geometry of interconnecting growth channels could be specified. Single-layered myocyte strands of variable length and with widths of as little as 65 micron (three to four cells wide) were obtained. The shape and orientation of the individual myocytes were a function of growth-channel width: the narrower the channel, the more elongated the cells and the more likely was the long axis to be oriented along the channel axis. In channels with width of 100 micron or less, cells were aligned longitudinally and cross-striated as in vivo. A high degree of morphological cell differentiation required the presence of contractile activity. Maximal diastolic potential (-71 mV), action potential amplitude (93 mV), and maximal upstroke velocity (140 V/sec) did not change with increasing culture age. Mean longitudinal conduction velocity was 0.39 m/sec. No electrophysiological or morphological evidence of photoresist toxicity was seen, and the data indicate a high degree of cell differentiation in the patterned cell cultures. The method thus is suitable for the study of the relation between impulse propagation and structure at a cellular level in artificial networks of predefined shape.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3