Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age.

Author:

Spach M S,Dolber P C

Abstract

Elucidation of the mechanisms of cardiac conduction disturbances leading to reentry will require resolution of the details of multidimensional propagation at a microscopic size scale (less than 200 micron). In practice, this will necessitate the combined analysis of extracellular and transmembrane action potentials. The purpose of this paper is to demonstrate the relationships between the time derivatives of the extracellular waveforms and the underlying action potentials in the experimental analysis of anisotropic propagation at this small size scale, and apply these relationships to human atrial muscle at different ages. The extracellular waveforms and their derivatives changed from a smooth contour during transverse propagation in young preparations to complex polyphasic waveforms in the older preparations. The major problem was to estimate the size and location of small groups of fibers that generated the complex waveforms in the older preparations. We found dissimilarities in the derivatives that distinguished source (bundle) size from the distance of the source to the measurement site. The differences in the extracellular waveforms and their derivatives indicated that there was electrical uncoupling of the side-to-side connections between small groups of fibers with aging. These changes produced a prominent zigzag course of transverse propagation at a microscopic level which, in turn, accounted for the increased complexity of the waveforms. The waveform differences also correlated with the development of extensive collagenous septa that separated small groups of fibers. The electrophysiological consequence was an age-related decrease in the "effective" transverse conduction velocities to the range of the very slow conduction (less than 0.08 m/sec) which makes it possible for reentry to occur in small regions of cardiac muscle with normal cellular electrophysiological properties.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 806 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3