Whole-Body Hyperthermia Provides Biphasic Cardioprotection Against Ischemia/Reperfusion Injury in the Rat

Author:

Yamashita Nobushige1,Hoshida Shiro1,Taniguchi Naoyuki1,Kuzuya Tsunehiko1,Hori Masatsugu1

Affiliation:

1. From the First Department of Medicine (N.Y., S.H., T.K., M.H.), the Department of Pathophysiology (T.K.), and the Department of Biochemistry (N.T.), Osaka University Medical School, Suita, Osaka, Japan.

Abstract

Background —Hyperthermia increases cardiac tolerance to ischemia/reperfusion injury 24 hours after the heat stress. Free radicals and redox mechanisms have been implicated in such tolerance. However, the time course and its relation to the induction of antioxidative enzymes in the protection induced by whole-body hyperthermia against ischemia/reperfusion injury are unknown. Methods and Results —Hyperthermia was induced in anesthetized rats by placement in a temperature-controlled water bath. After the defined recovery interval(s) at room temperature, ischemia was induced by occlusion of the left coronary artery for 20 minutes, followed by reperfusion for 48 hours. The exposure to hyperthermia led to a recovery interval– dependent, biphasic reduction in the incidence of ventricular fibrillation during ischemia and in the size of the myocardial infarct as determined after 48 hours of reperfusion. The time course of the late-phase (24- to 96-hour recovery interval) but not the early-phase (0.5 hour) cardioprotection depended on the degree of hyperthermia. The time course of the increase in myocardial manganese superoxide dismutase (Mn-SOD) activity corresponded to that of the cardioprotective effects, although an increase in the content of Mn-SOD and of heat shock protein 72 corresponded only to the late-phase effects. Administration of an antioxidant before hyperthermia abolished the early- and late-phase cardioprotection and the increase in Mn-SOD activity. Conclusions —The activation of Mn-SOD mediated by free radical production during hyperthermia is important in the acquisition of early-phase and late-phase cardioprotection against ischemia/reperfusion injury in rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference37 articles.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3