Proinflammatory Activation of Macrophages by Basic Calcium Phosphate Crystals via Protein Kinase C and MAP Kinase Pathways

Author:

Nadra Imad1,Mason Justin C.1,Philippidis Pandelis1,Florey Oliver1,Smythe Cheryl D.W.1,McCarthy Geraldine M.1,Landis Robert C.1,Haskard Dorian O.1

Affiliation:

1. From the British Heart Foundation Cardiovascular Medicine Unit (I.M., J.C.M., P.P., O.F., C.D.W.S., R.C.L., D.O.H.), Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London; and the Department of Clinical Pharmacology (G.M.M.), The Royal College of Surgeons, Dublin. The current address of R.C.L. is the Edmund Cohen Laboratory for Vascular Research, Chronic Disease Research Centre, Tropical Medicine Research Institute, UWI, Barbados,...

Abstract

Basic calcium phosphate (BCP) crystal deposition underlies the development of arterial calcification. Inflammatory macrophages colocalize with BCP deposits in developing atherosclerotic lesions and in vitro can promote calcification through the release of TNF alpha. Here we have investigated whether BCP crystals can elicit a proinflammatory response from monocyte-macrophages. BCP microcrystals were internalized into vacuoles of human monocyte-derived macrophages in vitro. This was associated with secretion of proinflammatory cytokines (TNFα, IL-1β and IL-8) capable of activating cultured endothelial cells and promoting capture of flowing leukocytes under shear flow. Critical roles for PKC, ERK1/2, JNK, but not p38 intracellular signaling pathways were identified in the secretion of TNF alpha, with activation of ERK1/2 but not JNK being dependent on upstream activation of PKC. Using confocal microscopy and adenoviral transfection approaches, we determined a specific role for the PKC-alpha isozyme. The response of macrophages to BCP crystals suggests that pathological calcification is not merely a passive consequence of chronic inflammatory disease but may lead to a positive feed-back loop of calcification and inflammation driving disease progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 319 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3