Reprogramming of the Human Atrial Transcriptome in Permanent Atrial Fibrillation

Author:

Barth Andreas S.1,Merk Sylvia1,Arnoldi Elisabeth1,Zwermann Ludwig1,Kloos Patrick1,Gebauer Mathias1,Steinmeyer Klaus1,Bleich Markus1,Kääb Stefan1,Hinterseer Martin1,Kartmann Heike1,Kreuzer Eckart1,Dugas Martin1,Steinbeck Gerhard1,Nabauer Michael1

Affiliation:

1. From the Departments of Medicine I (A.S.B., E.A., L.Z., P.K., S.K., M.H., H.K., G.S., M.N.) and Cardiac Surgery (E.K.), University Hospital Grosshadern, and the Department of Medical Informatics, Biometrics, and Epidemiology (S.M., M.D.), Ludwig-Maximilians-University, Munich, Germany; Aventis Pharma Deutschland GmbH (M.G., K.S., M.B.), Frankfurt am Main, Germany; and the Institute of Physiology (M.B.), Christian- Albrechts-University, Kiel, Germany.

Abstract

Atrial fibrillation is associated with increased expression of ventricular myosin isoforms in atrial myocardium, regarded as part of a dedifferentiation process. Whether reexpression of ventricular isoforms in atrial fibrillation is restricted to transcripts encoding for contractile proteins is unknown. Therefore, this study compares atrial mRNA expression in patients with permanent atrial fibrillation to atrial mRNA expression in patients with sinus rhythm and to ventricular gene expression using Affymetrix U133 arrays. In atrial myocardium, we identified 1434 genes deregulated in atrial fibrillation, the majority of which, including key elements of calcium-dependent signaling pathways, displayed downregulation. Functional classification based on Gene Ontology provided the specific gene sets of the interdependent processes of structural, contractile, and electrophysiological remodeling. In addition, we demonstrate for the first time a prominent upregulation of transcripts involved in metabolic activities, suggesting an adaptive response to increased metabolic demand in fibrillating atrial myocardium. Ventricular-predominant genes were 5 times more likely to be upregulated in atrial fibrillation (174 genes upregulated, 35 genes downregulated), whereas atrial-specific transcripts were predominantly downregulated (56 genes upregulated, 564 genes downregulated). Overall, in fibrillating atrial myocardium, functional classes of genes characteristic of ventricular myocardium were found to be upregulated (eg, metabolic processes), whereas functional classes predominantly expressed in atrial myocardium were downregulated (eg, signal transduction and cell communication). Therefore, dedifferentiation with adoption of a ventricular-like signature is a general feature of the fibrillating atrium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3