Excitation–Transcription Coupling in Arterial Smooth Muscle

Author:

Wamhoff Brian R.1,Bowles Douglas K.1,Owens Gary K.1

Affiliation:

1. From Biomedical Sciences (D.K.B.), Veterinary School of Medicine, University of Missouri, Columbia, Mo; and the Department of Molecular Physiology and Biological Physics (B.R.W., G.K.O.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Va.

Abstract

The primary function of the vascular smooth muscle cell (SMC) is contraction for which SMCs express a selective repertoire of genes (eg, SM α-actin, SM myosin heavy chain [SMMHC], myocardin) that ultimately define the SMC from other muscle cell types. Moreover, the SMC exhibits extensive phenotypic diversity and plasticity, which play an important role during normal development, repair of vascular injury, and in vascular disease states. Diverse signals modulate ion channel activity in the sarcolemma of SMCs, resulting in altered intracellular calcium (Ca) signaling, activation of multiple intracellular signaling cascades, and SMC contraction or relaxation, a process known as “excitation–contraction coupling” (EC-coupling). Over the past 5 years, exciting new studies have shown that the same signals that regulate EC-coupling in SMCs are also capable of regulating SMC-selective gene expression programs, a new paradigm coined “excitation–transcription coupling” (ET-coupling). This article reviews recent progress in our understanding of the mechanisms by which ET-coupling selectively coordinates the expression of distinct gene subsets in SMCs by disparate transcription factors, including CREB, NFAT, and myocardin, via selective kinases. For example, L-type voltage-gated Ca 2+ channels modulate SMC differentiation marker gene expression, eg, SM α-actin and SMMHC, via Rho kinase and myocardin and also regulate c-fos gene expression independently via CaMK. In addition, we discuss the potential role of IK channels and TRPC in ET-coupling as potential mediators of SMC phenotypic modulation, ie, negatively regulate SMC differentiation marker genes, in vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3