Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase

Author:

SOMLYO ANDREW P.1,SOMLYO AVRIL V.1

Affiliation:

1. Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia

Abstract

Somlyo, Andrew P., and Avril V. Somlyo. Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol Rev 83: 1325-1358, 2003; 10.1152/physrev.00023.2003.— Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Gαq, Gα12, Gα13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP · RhoA · GDI to GTP · RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Reference442 articles.

1. Cross Talk Between Cyclic Nucleotides and Polyphosphoinositide Hydrolysis, Protein Kinases, and Contraction in Smooth Muscle

2. Activation of Mitogen-Activated Protein Kinase in Porcine Carotid Arteries

3. Adelstein RS and Klee CB. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem 256: 7501-7509, 1981.

4. Aepfelbacher M, Trasak C, Wilharm G, Wiedemann A, Trulzsch K, Krauss K, Gierschik P, and Heesemann J. Characterization of YpoT effects on Rho GTPases in Yersinia enterocolitica infected cells. J Biol Chem. In press.

5. Activation of RhoA and ROCK Are Essential for Detachment of Migrating Leukocytes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3