Pulmonary Hypertension and Right Heart Failure in Pituitary Adenylate Cyclase–Activating Polypeptide Type I Receptor–Deficient Mice

Author:

Otto Christiane1,Hein Lutz1,Brede Marc1,Jahns Roland1,Engelhardt Stefan1,Gröne Hermann-Josef1,Schütz Günther1

Affiliation:

1. From Division of Molecular Biology of the Cell (C.O., G.S.), German Cancer Research Center, Heidelberg; the Institute of Pharmacology (L.H., M.B., R.J., S.E.), University of Würzburg, Würzburg; and the Department of Cellular and Molecular Pathology (H.-J.G.), German Cancer Research Center, Heidelberg, Germany.

Abstract

Background— Pituitary adenylate cyclase–activating polypeptide (PACAP), acting via 3 different G protein–coupled receptors, has been implicated in the regulation of several homeostatic systems in the body, including cardiopulmonary control. To define the physiologic role of the PACAP-preferring type I receptor, PAC1, in cardiopulmonary function, we developed a mutant mouse strain lacking functional PAC1 receptors. Methods and Results— When PAC1-deficient mice were crossed onto a C57BL/6 background, almost all mutants died during the second postnatal week. Whereas mutant mice were indistinguishable from their wild-type littermates at birth, they showed progressive weakness and died from rapidly developing heart failure. Right ventricles of PAC1 mutants were massively dilated and showed cardiac myocyte hypertrophy, whereas left ventricular structure was unaltered. On direct cardiac catheterization, right ventricular pressure was elevated by 45% in PAC1-deficient mice, indicating increased pulmonary artery pressure, as no malformations were detected in the valves or outflow tract of the right ventricle. Consistent with elevated pulmonary pressure, lung capillary density was decreased by 30% and small pulmonary arteries of mutant mice had significant vascular smooth muscle cell hypertrophy compared with wild-type mice. Conclusions— Whereas PACAP induces vasodilation in isolated pulmonary vessels in wild-type mice, the absence of its specific receptor PAC1 causes pulmonary hypertension and right heart failure after birth. These in vivo findings demonstrate the crucial importance of PAC1-mediated signaling for the maintenance of normal pulmonary vascular tone during early postnatal life.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3