Comparing the Efficacy and Safety of a Novel Monophasic Waveform Delivered by the Passive Implantable Atrial Defibrillator With Biphasic Waveforms in Cardioversion of Atrial Fibrillation

Author:

Manoharan Ganesh1,Evans Noel1,Allen Desmond1,Anderson John1,Adgey Jennifer1

Affiliation:

1. From the Regional Medical Cardiology Centre, Royal Victoria Hospital, Belfast (G.M., D.A., J. Adgey); Department of Engineering, University of Ulster, Jordanstown (G.M., N.E., J. Anderson); and Queens University of Belfast, Belfast (G.M., D.A.), UK.

Abstract

Background— The passive implantable atrial defibrillator (PIAD) (with no battery or discharging capacitor and powered transcutaneously by radio-frequency energy) delivering a novel monophasic low-tilt waveform is more efficacious than the standard monophasic waveform at atrial defibrillation. Standard biphasic (STB) waveforms, however, are more efficacious and safer than monophasic waveforms. This study compared the efficacy and safety of the PIAD waveform with biphasic waveforms. Methods and Results— Sustained atrial fibrillation (AF) was induced by rapid atrial pacing. Cardioversion was attempted via 2 atrial defibrillation leads. The efficacy of the PIAD was compared with 3 biphasic waveforms (standard, single rounded, and double rounded) at varying voltage settings in 10 pigs. After a synchronized shock, hemodynamic changes between the PIAD, standard biphasic, and monophasic waveforms were compared at 1.5 and 3.0 J in 12 pigs. Myocardial injury (biochemical and histological) after ten 5-J PIAD shocks was compared with a no-shock group in 14 pigs. The PIAD 100-V setting was significantly more efficacious than the STB (100/−50 V: 100% [1.88±0.02 J] versus 90% [0.89±0.0 J]; P =0.025). No arrhythmic, hemodynamic, or myocardial injury was observed with the PIAD waveform. Conclusions— Defibrillation with the PIAD is more efficacious than with the STB waveform and appears safe. This device could provide a more effective option for cardioversion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3