The mitral valve orifice method for noninvasive two-dimensional echo Doppler determinations of cardiac output.

Author:

Fisher D C,Sahn D J,Friedman M J,Larson D,Valdes-Cruz L M,Horowitz S,Goldberg S J,Allen H D

Abstract

We developed and validated a mitral valve orifice method for Doppler cardiac output determination. In 15 open-chest dogs, cardiac output was controlled and measured by a roller pump interposed between the right atrium and pulmonary artery as a right-heart bypass. Left heart flows were measured in the open-chest dog model by Doppler measurements at the mitral valve orifice and compared not only to volume flow measured by the roller pump, but to electromagnetic flow meters as well. The maximum mitral valve orifice area was measured off short-axis two-dimensional echocardiographic views by planimetry. The maximal orifice was then adjusted for its diastolic variation in size by calculating a ratio of mean-to-maximal mitral valve separation on a derived M-mode echocardiogram. Flow was sampled parallel to mitral valve inflow in a four-chamber plane. The multiplication of mean flow throughout the cardiac cycle by the mean mitral valve area after correction for diastolic size variation yielded a cardiac output determination that could be compared to the roller pump measurement. Fifty-two cardiac output determinations over roller pump values of 1-5 l/min yielded a high correlation between roller pump flows and Doppler (r = 0.97 +/- 0.23 l/min). Our study shows that the mitral valve orifice provides an accurate site for Doppler cardiac output measurements.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3