Altered Ventricular and Myocyte Response to Angiotensin II in Pacing-Induced Heart Failure

Author:

Cheng Che-Ping1,Suzuki Makoto1,Ohte Nobuyuki1,Ohno Michiya1,Wang Zhong-Min1,Little William C.1

Affiliation:

1. From the Section of Cardiology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC.

Abstract

Abstract Alterations in the cardiac response to angiotensin II (Ang II) may contribute to the functional impairment in tachycardia-induced heart failure (congestive heart failure [CHF]). Accordingly, we studied the response to Ang II in eight conscious instrumented dogs before and after inducing CHF. Left ventricular (LV) performance was assessed by measuring LV pressure and LV volume. Isolated myocyte function was evaluated using computer-assessed videomicroscopy. In conscious animals before CHF, Ang II produced a load-dependent slowing of the time constant of LV relaxation (τ) and did not depress intact LV contractile function. After CHF, although Ang II produced a similar increase in LV systolic pressure, the increases in LV diastolic pressure and time constant τ were much greater, and contractile performance was depressed. These changes persisted when the elevation of end-systolic pressure was prevented by nitroprusside. Similar changes were also present after autonomic blockade. In isolated myocytes, before CHF, Ang II (10 −6 mol/L) produced a slight positive inotropic effect. In contrast, after CHF, Ang II produced a negative inotropic effect and slowed the rate of relengthening. The effects in the intact LV and myocytes were reversed by an Ang II AT 1 receptor blocker (losartan). We conclude that pacing-induced CHF alters the LV and myocyte response to Ang II, so that Ang II produces direct depressions in intact LV contraction, relaxation, and filling and exacerbates myocyte contractile dysfunction. These effects are mediated through the activation of AT 1 receptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3