Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits.

Author:

Harada S1,Tokunaga S1,Momohara M1,Masaki H1,Tagawa T1,Imaizumi T1,Takeshita A1

Affiliation:

1. Research Institute of Angiocardiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

Abstract

It has been shown that nitric oxide (NO) is synthesized in the central nervous system as well as in vascular endothelial cells. However, the physiological role of NO in cardiovascular regulation by the central nervous system remains unclear. This objective of this study was to examine the possibility that NO plays a role in neural transmission in the nucleus tractus solitarius (NTS) and thus contributes to control of sympathetic nerve activity in rabbits. We examined the effects of NG-monomethyl-L-arginine (L-NMMA), an inhibitor of the formation of NO from L-arginine, microinjected into the NTS on arterial pressure (AP), heart rate (HR), and renal sympathetic nerve activity (RSNA). L-NMMA increased AP and RSNA in rabbits with intact as well as denervated sinoaortic baroreceptors and vagi. L-NMMA increased HR only in rabbits with sinoaortic denervation and vagotomy. Pretreatment with L-arginine microinjected into the NTS, which did not alter baseline AP, HR, and RSNA, prevented the increases in AP and RSNA evoked with subsequent L-NMMA. Pretreatment with D-arginine did not alter the effects of subsequent L-NMMA injections into the NTS. The gain of arterial baroreflex control of RSNA assessed by the slope of the regression line relating changes in AP and those in RSNA caused by intravenous phenylephrine or nitroglycerin did not differ before and after microinjections of L-NMMA. L-NMMA microinjected into the area postrema did not alter AP, HR, or RSNA. These results suggest that in rabbits NO is involved in the mechanism in the NTS that mediates tonic inhibition of RSNA.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 271 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3