Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells.

Author:

Bassani J W1,Qi M1,Samarel A M1,Bers D M1

Affiliation:

1. Department of Physiology, Loyola University School of Medicine, Maywood, Ill. 60153.

Abstract

We developed protocols with intact cultured neonatal rat myocytes to directly evaluate the function of the sarcoplasmic reticulum (SR) Ca-ATPase (or SERCA2), Na-Ca exchange (Na-CaX), and slow Ca transport systems (mitochondria and sarcolemmal Ca-ATPase). Spontaneously beating control cells were compared with cells cultured for 2 days in the presence of verapamil (verapamil-arrested cells, VA). Intracellular calcium (Cai) transients were measured by use of indo-1 during (1) spontaneous twitches, (2) contractures induced by rapid application of caffeine (CafC, with and without Nao), and (3) twitches induced by brief depolarizations with high [K]o solution (K-twitches). We also measured mRNA levels for the SR Ca-ATPase and Na-CaX in the same experimental preparations. The t1/2 for [Ca]i decline when both the SR Ca uptake and Na-CaX were prevented was the same for control and VA cells (approximately 20 seconds), indicating unaltered slow Ca transport systems. Similarly, there was no significant difference in the t1/2 of CafC when Na-CaX was the main mechanism responsible for [Ca]i decline (t1/2 approximately 1.5 seconds), indicating unaltered Na-CaX. Conversely, we found nearly a twofold increase in the rate of [Ca]i decline during K-twitches (control t1/2, 0.84 +/- 0.05 seconds; VA t1/2, 0.48 +/- 0.06 second; P < .001), indicating an increase in SR Ca-pumping activity in VA cells. This was also reflected by a 56% increase in the peak [Ca]i reached during CafC used to assess maximal SR Ca content (427 +/- 49 nmol/L in control versus 665 +/- 75 nmol/L in VA cells).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3