Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity.

Author:

VanBavel E1,Spaan J A1

Affiliation:

1. Department of Medical Physics and Informatics, University of Amsterdam, The Netherlands.

Abstract

The aim of this study is to quantify the porcine coronary arterial branching pattern and to use this quantification for the interpretation of flow heterogeneity. Two casts of the coronary arterial tree were made at diastolic arrest and maximal dilation. The relation between length and diameter of arterial segments was quantified, as well as the area expansion ratio and diameter symmetry of vascular nodes. These relations were used to construct computer models of the coronary arterial tree, covering diameters between 10 and 500 microns. Topology of these simulated trees was analyzed using Strahler ordering: Bifurcation ratio, diameter ratio, and length ratio were constant along orders 2-8 and equal to 3.30, 1.51, and 1.63, respectively. In each order, the number of segments per Strahler vessel was almost geometrically distributed. For the lowest orders, these predictions were confirmed by direct observations. From the network model, local pressure and flow were also predicted: Pressure fell from 90 to 32 mm Hg at the 10-microns level. The coefficient of variation (CV) of flow in individual segments was dependent on the number of perfused terminal segments (Nt) according to the fractal relation CV(Nt) approximately Nt(1-D), where D is the fractal dimension (1.20). CV of flow in 1-g tissue units was predicted to be 18%. This study shows that the structure of the coronary arterial bed is an important determinant of the fractal nature of local flow heterogeneity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3